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ABSTRACT 

The building of knowledge-intensive real-time intelligent 
control systems is one of the most difficult tasks humans attempt.  
It is motivated by the desire to create an artificial reasoning system 
that is capable of intelligent behavior, i.e. replicating the ability to 
act upon the world and to successfully accomplish activities that 
are only possible with the levels of knowledge processing 
exhibited by human beings.   A critical question to be answered is 
how is the success of this effort is to be measured and evaluated.  
Measurement of the outward observable system behavior, while 
somewhat indicative does not really measure the correctness or 
quality of the system’s capabilities.    This is especially true in 
complex real-time control systems such as autonomous on-road 
driving. 

This paper describes an on-going effort at NIST, funded by 
the Defense Advanced Research Project Agency (DARPA) 
Mobile Autonomous Robot Software (MARS) On-Road Driving 
Project, to do task analysis and develop performance metrics for 
autonomous on-road driving.   

This project uses the NIST Real-time Control System (RCS, 
now referred to as 4D/RCS) [1] design methodology and reference 
architecture to develop a task decomposition representational format 
for the on-road driving task knowledge.   This task decomposition 
representation is used as the framework to further specify the world 
model entities, attributes, features, and events required for proper 
reasoning about each of the subtask activities.  These world model 
specifications, in turn, are used as the requirements for the sensory 
processing system.  These requirements identify those things that 
have to be measured in the environment, including their resolutions, 
accuracy tolerances, detection timing, and detection distances for 
each subtask activity.  From these can be developed a set of 
performance metrics that allow validation of sensory processing by 
evaluating the world model representations it produces for each 
individual component subtask activity.  In this way, taxonomies of 
autonomous capabilities can be developed and tested against these 
sensory processing and world model building performance metrics.  
Additional metrics can be developed to measure the performance 
characteristics of the behavior generation component with its 
planning and value judgment operations, but these additional metrics 
are not the topic of this paper 
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1.  INTRODUCTION  
 
NIST has been involved with the development of 
autonomous intelligent vehicle control systems for a number 
of years.  These efforts support both off-road and on-road 
driving tasks.   This work, which has as its goal to approach 
human levels of performance in autonomous driving, has 
identified significant research and development areas.  
There is the behavior generation component that involves 
reasoning from real-time world model representations to 
carry out strategic and tactical behaviors for both off-road 
military missions and on-road civilian driving tasks.  This 
includes the planning of alternate courses of action as well 
as the planning of alternate paths, evaluation of these plans 
and selection of the most appropriate action through some 
type of value judgment.  Much work is presently expended 
in this area of reasoning, planning, and decision-making.  
Presently, however, the more significant impediment and 
therefore the area requiring major work is in the area of 
sensors and sensory processing algorithms to generate 
accurate, registered world maps and the recognition and 
classification of entities at sufficient resolution to populate a 
world model representation from which the behavior 
generation can work. 

Complex real-time control systems are characterized 
by the major components of sensory processing to measure 
entities and events of interest in the environment; internal 
world model processing that derives world representations 
from sensory processing and task context internal states; 
and the behavior generation processing that reasons from 
this world model, develops alternate plans, and makes value 
judgments to decide on the next appropriate output action to 
accomplish the goal tasks (Figure 1).   What is needed are 
performance metrics at the level of these internal processing 
components that can be used to judge their quality and 
correctness.     

On the sensory processing side of the world model 
there is the sensor fusion, feature and attribute detection, 
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Figure 1.  The basic internal structure of a 4D/RCS control loop.  Sensory processing performs the functions of 
windowing, grouping, computation, estimation, and classification on input from sensors.  World modeling maintains 
knowledge in the form of images, maps, entities, and events with states, attributes, and values.  Relationships between 
images, maps, entities, and events are defined by pointers.  These relationships include class membership, ontologies, 
situations, and inheritance.  Value judgment provides criteria for decision making.  Behavior generation is responsible for 
planning and execution of behaviors. 

object classification, map building etc. – all in the context of 
the present task activities.  On the behavior side of the 
world model there is the planning and value judgment along 
with the plan selection and execution.   

It is in support of the development of this sensory 
processing to world model data specification that the 
present work is addressed.  The sensory processing 
requirements of different driving tasks have significantly 
different resolutions, identification, and classification 
requirements which suggests that performance metrics 
should be defined on a task-by-task basis.  As an example, 
for the task of the vehicle driving down a highway, the 
sensor system has to be able to identify large objects 
moving nearby, their direction, speed and acceleration, their 
positions in the lanes (which means the sensory processing 
system has to be able to identify the lanes on the road) and 
state of brake and turn signal indicator lights on these 
objects.  There is little requirement for detailed recognition 
of the type of objects or the need to see them at a distance or 
to read signs along side or overhead of the road.   

If, however, our autonomous vehicle wants to pass a 
vehicle on an undivided two lane road, then an 
extraordinarily detailed representation of the world has to be 
sensed that identifies additional entities such as upcoming 
intersections, rail road crossings, vehicles in the oncoming 
lane out to very large distances, lane marking types, 
roadside signs etc.  This level of sensor capability and 
sensor data to world model processing probably does not 
exist today.   

Thus, we see that the sensor requirements and 
sensory-world model processing performance metrics are 
highly dependent on the particular driving task that we are 

trying to accomplish and should therefore be specified 
according to the list of different driving tasks.  It is the goal 
of this work to first develop this list of driving tasks, and 
then to identify the detailed world model entities, features, 
attributes, resolutions, recognition distances, minimum data 
update times, and timing for task stability for each of these 
decomposed subtask activities.  This will be the set of 
specifications that allow us to determine if particular sensor 
systems and particular sensor processing algorithms are 
sufficient to support particular driving tasks.  Conversely, if 
the goal is to be able to accomplish a particular set of 
driving tasks, this specification can be used to select the 
appropriate sensors and specify the sensor processing 
requirements needed to support this particular set of driving 
tasks. 

If we define in great detail the features, attributes, 
and classifications of entities required in the world model in 
order to reason about and generate specific driving tasks, we 
will have a specification that can be used to not only 
identify the requirements to the sensory processing 
researchers but can also be used as testing performance 
metrics to evaluate the capabilities of various sensors and 
sensory processing algorithms. 
 
2.  TASK DECOMPOSITION KNOWLEDGE 
 
One of the NIST efforts of the DARPA MARS project is to 
provide a task analysis for autonomous on-road driving 
which can, among other things, serve as the basis for 
development of a number of performance metrics.  This task 
analysis is based 



        
 
Figure 2. Example of a task decomposition hierarchical representation of the on-road driving task.  
 
 
 

 
Figure 3.  The RCS implementation creates a hierarchical organization of agent control modules (right side of figure) that will be 
the execution engine for the task decomposition (left side of figure).  There is an agent control module assigned to each actuator 
system to be controlled and an organizational structure built up that mimics the same number of layers in the task decomposition 
representation.  Each corresponding agent control module will accept the appropriate subtask command at the equivalent level in 
the task hierarchy and will determine the next subgoal command to its subordinate based on the rules encoded in the 
corresponding state table.  For example, the subgoal command of PassVehInFront to the Driving Behaviors agent control module 
will select the state table that contains all of the rules necessary to evaluate the present world state at this level of abstraction and 



in the context of passing the vehicle in front and send the appropriate subgoal command (either a FollowLane, or a 
ChangeToRightLane, or a ChangeToLeftLane) for this present state to the Elemental Maneuvers agent control module. 
 
 

  
 
Figure 4.  Every agent control module in the RCS hierarchy has the same processing structure of the generic agent control module.  A 
module receives a commanded task (goal) that represents the present activity to be done at this level in the hierarchy at this instant.  The 
Behavior Generation (BG) function uses this commanded task to look up and retrieve the state-table that contains the rules relevant to this 
activity.  This sets the context for all of the processing at this module.  Sensory Processing (SP) is filling in world model data from the 
environment that is important to this particular task.  If the situation requires planning activity, then the Value Judgment (VJ) function 
projects possible courses of action and performs some cost based analysis to come up with a plan.  As the situation creates matches to the 
rules in the BG’s state-table, the corresponding action part of the rule generates the next subgoal command to the subordinate agent control 
module. 
 
upon work performed by the Department of Transportation 
in the 1970s [3]. 

Work at NIST over the last 25 years has led to the 
development of the Real-time Control System (RCS) [1], 
now referred to as 4D/RCS) methodology and reference 
architecture as the formal approach to the design and 
implementation of these complex, intelligent, real-time 
control systems. 

The 4D/RCS methodology uses a hierarchical task 
decomposition representational format [2] to hang the 
domain knowledge on.  Hierarchies are the architectural 
mechanisms used to “chunk” and abstract systems into 
manageable layers of complexity.  The scenario descriptions 
of intelligent control system activities naturally evolve into 
a task decomposition representation since the scenarios 
aretask sequences and can easily be discussed at many 
levels of abstraction leading to well-defined levels within 
the task hierarchy. This provides a convenient framework 
for system designers/knowledge recorders to organize the 
information from the expert within an architecture that 

preserves the narrative character of the expert’s scenarios 
allowing the expert to easily review this representational 
format.  Thus, a hierarchical task decomposition 
representational format is clearly well suited for this.  
Figure 2 illustrates the process of going from expert 
knowledge to a task decomposition hierarchy for the on-
road driving task. 

This task decomposition hierarchy also acts as a 
convenient structure on which to place the semantic 
knowledge from the expert.  In the on-road driving task, 
semantic knowledge are such knowledge items as the rules 
of the road, the rules that require the vehicle to drive more 
slowly on wet or icy roads, or to allow larger following 
distances on wet roads, etc.  Since each layer in the task 
decomposition represents a different level of the abstraction 
of the tasks, each layer also delineates levels of detailed task 
context for the incorporation of semantic knowledge 
relevant to that level of detail within a particular task’s 
activities.   



We will take advantage of this very organized 
layering of the task knowledge into different levels of 
abstraction and task responsibility to aid us in doing a 
detailed analysis of the knowledge associated with finely 
partitioned task activities for the on-road driving activities.   

Since the 4D/RCS methodology used a task 
decomposition decision hierarchy as the mechanism to 
capture the knowledge from the expert’s narratives, it is 
straightforward to instantiate this into an implementation of 
a hierarchical architecture of agent control modules 
executing this task decomposition in a one-to-one fashion 

 
 

 
Figure 5.  The task to “Pass a vehicle on a two lane road” is shown in both the task tree representation and the state table 
representation.  The task knowledge for this particular on-road driving task is the set of subgoals, their sequence, and the 
conditions (present world situations) that cause each of these subgoals to be commanded.  Here the sequence of subgoals is to 
“FollowLane”, “ChangeToLeftLane”, “FollowLane”, “ChangeToRightLane”, and “FollowLane”.  These are listed in the output action 
side (right side) of the state table.  The conditions that trigger these output actions are present world situations such as 
“ConditionsGoodToPass”,  “InPassingLane, and “ClearOfPassedVehicle”, etc and are listed in the input condition side (left side) of 
the state table. 

 
 

(Figure 3).  This 4D/RCS implementation technique 
represents the knowledge in the implemented system in a 
manner that continues to be easily recognized by the domain 
expert.  

It maintains the layered partitioning of the task to 
create levels of abstraction, task responsibility, execution 
authority, and knowledge representation in a manner so as 
to greatly enhance the designer’s ability to think about each 
of these layers separately.  Each layer totally encapsulates 
the problem domain at one level of abstraction so all aspects 
of the task at this one layer can be analyzed without 
overwhelming the designer.  All of the system’s interactions 
and co-ordinations within the context of this layer of 
abstraction are contained here so that modifications and 
enhancements to this layer can be evaluated with respect to 
their completeness and potential interaction with other task 
activities at that same level of abstraction.  At each layer, all 
of the relevant sensory processing, world modeling, and 
behavior generation processing for that level of 
responsibility and authority is encapsulated. 

As such, the 4D/RCS approach provides a very well 
ordered representation of the tasks at various levels of finer 
and finer detail, clustered at each level in a task sensitive 
context.  This is ideal for the manner in which we want to 
identify the performance metrics.  

A generic agent control module (Figure 4) is used as 
the unit building block in our hierarchical implementation 
system.  Finite State Machines (FSMs) cluster and order the 
task decomposition knowledge rules specific to a particular 
task goal for an agent control module.  Part of the 
implementation procedure is to determine which rules apply 
to each particular subtask activity at each level in the 
hierarchy.  This is a natural outcome of the task 
decomposition process.   

A task is decomposed at one level into a sequence of 
simpler subtask actions to command the next subordinate 
level.  The representation of this sequence can be in the form 
of a FSM that can be implemented as a state table, which is 
the ordered representation of the rules used to encode those 
sets of conditions that will result in the correct sequencing 
through the appropriate next output actions to accomplish that 
particular task.   

These state tables are also an extremely convenient 
representational format for the developer.  The state tables 
capture the relevant task sequencing and state knowledge at 
each control module for every task activity.   As the need 
arises to evolve the system, the state table that contains the 
knowledge rule set that concerns the activity to be modified 
is easily identified and retrieved. Potential conflicts that 
might arise in the execution are easily seen by inspection 



(since this is such a small set of rules) and avoided by the 
ordering of the rules that is done by the use of additional 
state variables.   In this manner, the expert can provide 
additional task knowledge to the resolution of the potential 
conflict in specific task activities rather than the system 
designer devising some arbitrary conflict resolution 
mechanism to be applied generally.  An example of the 

mapping of the task decomposition knowledge into a state 
table is shown in Figure 5.   
 
3. WORLD MODEL KNOWLEDGE 
 
The FSMs described above are used to encode the task 
decomposition knowledge.  Each line of each state table 

 
 

 
Figure 6.  The “PassVehOnTwoLaneRoad” Plan StateTable encodes the task decomposition representation of all of the input 
conditions and corresponding output action subgoals. In this example, the next subgoal “ChangeToLeftLane” is chosen as the 
output action when the input condition of “ConditionsGoodToPass” is recognized.  This figure illustrates how all of the 
dependencies on the world model data are derived.  The high level group of situations that must be true for 
“ConditionsGoodToPass” to be true are identified.  Here, one of these (LegalToPass) is further refined to identify all of the world 
model states that make up this situation.  One of these world model states (NoRailroadXInPassZone) is then examined to 
determine all of the world entities, attributes, features, dimensions, and resolutions that go into the decision that this state is true.  
One of these entities (CrossBuck sign) is detailed as to the features, dimensions, and sensor resolutions required to recognize this 
entity within the distances required for the passing vehicle task. 
 
uses some symbolic value to describe the present situation 
that must be matched in order to execute the corresponding 
output action of that rule.  The processing required to 
evaluate that this particular situation is true can be thought 
of as a knowledge tree lying on its side, funneling left to 
right,  from the detailed sensory processing branching until 
all of the values have been reduced to the one appropriate 
situation identification encoded in a symbolic value such as 
“ConditionsAreGoodToPass” (see Figure 6).   This lateral 
tree represents the layers of refinement processing made on 
the present set of world model data to come to the 
conclusion that a particular situation now exists such as 
“ConditionsAreGoodToPass”.   

The identification of these layers of knowledge 
processing to evaluate to the situation value is done in 
reverse.  We know that we cannot change into the oncoming 
traffic lane (the “ChangeToLeftLane” action) during the 
passing operation until “ConditionsAreGoodToPass”.  Now 

we have to determine what are all of the things that have to 
be taken into consideration in order for this to be true.  To 
determine this, many different example scenarios are 
reviewed to determine all of the pieces of knowledge 
required for all of these variations.  The results are grouped 
by category into (in this example) five major evaluation 
areas.  Thus, to be able to say that the 
“ConditionsAreGoodToPass”, we first had to evaluate that 
each of the five sub groups were true, namely, the five 
situations of  “LegalToPass”, “EnvironmentSafeToPass”,  
“SituationInFrontOKtoPass”, “SituationInBackOKtoPass”, 
and “OncomingTrafficOKtoPass”, all had to be true.   

In this example, we have clustered all of the rules of 
the road that pertain to the passing operation at this level of 
task detail into the “LegalToPass” sub group evaluation.  
We have itemized nine world states to be evaluated and we 
have named them with the identifiers such as 
“NoConstructionInPassZone”, 



“NoTransitOrSchoolBusStopping”, “NoPassZone-
NotInEffect”,  “LaneMarkingsAllowPass”, 
“NoIntersectionsInPassZone”,  “NoRailroadXInPassZone”, 
etc. 

These world states can now be further broken into the 
primitive world model elements we need to be able to 
measure (such as vehicles, their speed, direction, location, 
lane markings, signs, railroad tracks, etc.) in order to 
determine that these world states exist.  These primitive 
world model elements then set the requirements for the 
sensory processing system we need to build to support these 
control tasks.  Everything has been determined in the 
context of individual tasks we want the system to be able to 
do. 
 
4. APPLICATION EXAMPLE 
 
In this section, we summarize the RCS methodology, and 
elaborate on an example mentioned throughout the paper 
pertaining to passing another vehicle on a two-lane 
undivided road. Domain experts are consulted and play an 
integral part throughout this entire process. In the case of 
on-road driving, we are all domain experts, though many of 
the conditions we look for and the actions we take are 
determined subconsciously. 
 
1) Scenario development with a domain expert - For 

any task in on-road driving, we walk through detailed 
scenarios with domain experts to deeply understand the 
actions they take in certain situations, what conditions 
spawned those actions, and why they felt the actions 
were most appropriate in that situation. If possible, we 
try to immerse the domain expert in similar situations 
and have them talk through their behaviors. In the case 
of passing on a two-lane undivided road, it is often 
beneficial to drive in a vehicle with the domain expert 
and to have them speak through their process of 
determining when it was appropriate to pass. These 
specific conditions that spawn behaviors often change 
slightly depending on the personality and aggressively 
of the driver, but we try to generalize the behavior to its 
fundamental components when encoding it in the 
control system. 

2) Develop the task decomposition hierarchy   - Before 
we can encode the knowledge needed to pass on a two-
lane undivided road, we must understand and build an 
initial, overall task decomposition hierarchy for on-road 
driving. This is an iterative process, and the task 
decomposition hierarchy often changes as new on-road 
driving scenarios are explored. Changes in the task 
decomposition hierarchy are much more frequent in the 
beginning, and gradually slow down as more and more 
scenarios are explored. The passing scenario is one of 
many scenarios that is used to develop this task 
decomposition  hierarchy. 

3) Determine the conditions that cause you to perform 
an action and the sub-actions that are needed to 
perform that action - In the case of passing, the 
actions that need to be performed are fairly 
straightforward; namely, change to left lane, follow left 
lane for some period of time, and change to right lane. 
This is shown in Figure 5. However, the conditions of 
when you start this sequence of actions and when you 
progress from one action to the next is much more 
difficult to understand. 
Let’s look at the conditions when one would initiate a 
passing operation. In speaking with domain experts, 
one could break down these conditions that must be 
true to pass into two categories: namely, that our 
vehicle desires to pass and that the conditions are good 
to pass. Only when both of these conditions are true do 
we initiate the passing operation. Through continued 
interrogation and “what-if” scenarios, we determine 
five conditions that dictate that conditions are good to 
pass.  So the next logical question to the domain expert 
would be “When are the conditions good to pass?” 
Through a series of continued interrogations and “what-
if” scenarios, one finds that five sub-conditions must be 
true for conditions to be good to pass:  1) it is legal to 
pass, 2) the environmental weather and visibility   
conditions are conducive to passing (often  related to 
weather conditions), 3) the situation in front of our 
vehicle is OK to pass  (other vehicles, pedestrians, and 
objects in front of us do not hinder our ability to pass), 
4) the situation in back of our vehicle is OK to  pass 
(the vehicle behind us is not passing or tailgating us), 
and 5) oncoming traffic allows us to pass safely (we  
have time to get around the vehicle in front of us). Each 
of these five sub-conditions would continue to be 
broken further down into sub-conditions until we get to 
the point where we have identified the objects in the 
environment, and their pertinent attributes, that we are 
concerned with to perform this passing action. 

4) Use the previous step to define the concepts that 
must be captured in the system’s underlying 
knowledge base, and structure the knowledge base 
to ensure maximum efficiency for the application - 
The objects and attributes discovered in the previous 
step sets the requirements for the knowledge base that 
underlies the system. Following through with the 
scenario of passing on a two-lane undivided road, in 
order to evaluate the conditions mentioned in the 
previous step, the knowledge base must contain 
concepts such as: 
• other vehicles, including their speed, direction, 

location, and possibly intention; 
• pedestrians, including the speed, direction, 

location, and possibly intention; 
• lane markings, along with the type of lane 

marking; 
• weather conditions and visibility; 



• signs, including the text on the sign. 
 
Once these concepts are captured in the knowledge 
base, they can be structured in such a way to ensure 
maximum efficiency of the system. 

5) Carefully evaluate all of the above objects and 
attributes in the context of the appropriate tasks to 
define resolutions, distances, and timing of the 
measurement of these items by the sensory 
processing system. - As shown in Figure 6 above with 
the identification of the railroad crossing buck sign, 
define the sizes, shapes, relative locations, and angles to 
the road, distances at which they have to be identified 
(thereby setting resolution requirements) etc.  This will 
be the specifications for the sensory processing in terms 
of the world model elements it must be able to measure 
and generate.  These same specifications become the 
performance requirements on the sensory processing 
during test and evaluation.   

 
5. EXAMPLE OF SENSORY PROCESSING 
METRICS 
 
In this section, we will look at some detailed examples of 
requirements for sensory processing, following through with 
our passing example. In particular, we will look at what it 
required of the sensors on the vehicle to determine, at any 
given time and speed, if it is legal to pass.  

As shown in Figure 6, in order for a passing operation 
to be legal, there cannot be: 

• any construction in the passing zone,  
• a transit or school bus stopping in the passing 

zone, 
• a no-passing-zone sign in the passing zone,  
• lane marking that prohibit passing 
• intersections in the passing zone 
• railroad crossing in the passing zone 
• a bridge in the passing zone 
• a tunnel in the passing zone 
• a toll booth in the passing zone 

 
Therefore, the sensory processing system must detect 

these items, or indicators that these items are approaching, 
at a distance that allows the vehicle to pass safely. In this 
analysis we make a few assumptions: 

• the vehicle can accelerate comfortably at 1.65 m/s2 
• our vehicle is positioned approximately one 

second behind the vehicle in front of it (i.e., our 
vehicle will be at the preceding vehicle current 
position in one second traveling at constant 
velocity) 

• our vehicle will begin merging back into tits 
original lane when it is one car length in front of 
the vehicle it is passing 

• the merging operation which brings the vehicle 
back into our vehicle’s original lane will take one 
second 

• the average length of a vehicle is 5 meters. 
 

All of these values are variables, and can easily be 
changed depending on the exact situation. 
 

With these assumptions, we explored what distance 
our vehicle would travel during a passing operation, how 
long it would take to travel that distance, and what the final 
velocity of the vehicle would be assuming initial speeds of 
13.4 m/s (30 mph), 17.9 m/s (40 mph), and 26.8 m/s (60 
mph). Table 1 shows the results. 
 

Speed 
(m/s) 

Time to 
Complete 
Pass (s) 

Distance 
Traveled 
in Pass 
(m) 

Final Velocity at 
End of Pass (m/s) 

13.4 6.32 117.8 23.9 
17.9 6.81 159.3 29.1 
26.8 7.68 253.9 39.5 
Table 1: Pertinent Values for Passing Operation at 

Various Speeds 
 

Note that in this analysis, we are assuming un-
occluded visibility.  

If we look at the “ no railroad crossing in passing 
zone” requirement, we note that there are multiple markings 
that can indicate a railroad crossing is upcoming, such as a 
crossbuck just before the railroad crossing, or railroad signs 
at pre-defined distances before the railroad crossing. Table 2 
shows the specification on how far before a railroad 
crossing a warning signs should be placed, what size the 
sign must be, and what size the letter on the signs must be, 
according to the Manual of Uniform Traffic Control 
Devices (MUTCD) [4]. 
 
Speed 
(m/s) 

Distance from 
Railroad 
Crossing (m) 

Sign 
Dimensions (m 
x m) 

Letter 
height 
(m) 

13.4 99 0.450 x 0.450 0.125 
17.9 145 0.450 x 0.450 0.125 
26.8 236 0.450 x 0.450 0.125 

Table 2: Specifications for Railroad Crossing Signs 
 

Considering that the railroad warning sign is a pre-
defined distance before the railroad crossing, we can 
subtract that distance from the full passing distance shown 
in Table 1 to identify the forward distance our sensors need 
to be able to see. These distances are shown in Table 3.  
 
Speed 
(m/s) 

Passing 
Distance 
(m) 

Warning Sign 
Distance (m) 

Sensor Sign 
Distance 
(m) 



13.4 117.8 99 18.8 
17.9 159.3 145 14.3 
26.8 253.9 236 17.9 

Table 3:  Sight Distance for Railroad Warning Sign 
 

This sets the specification for how far a sensor 
must be able to “see” to determine if there is a railroad 
crossing sign in the passing zone. However, we can take this 
one step further and determine what the resolution of the 
sensors must be to read the sign. The following couple of 
paragraphs look at the requirements of the sensor itself. We 
ignore the software that performs the character and object 
recognition in this discussion, though we recognize that it is 
at least as important as the specifications for the sensors. 

If we assume that the sign needs to be read (e.g., 
we do not know what the sign indicates based on its shape 
and/or color), and that for each letter in the sign, we need a 
20x20 array of pixels hits on that letter to be able to 
recognize the letter, assuming the set of letters can be 
described in a 10x10 dot matrix and we double this to 
approximate the Nyquist criteria. Using simple trigonometry 
based upon the distance to the sign and the size of the letters 
on the size as shown in Table 2, we can show that we need a 
camera that has resolutions of about 0.02 degrees for all 
three cases above. 

In some cases, a warning sign is not present and 
the sensors must rely on recognizing a crossbuck that is 
immediately before the railroad crossing. In this case, we 
assume that we need an array of 5 x 5 pixel hits on the 
crossbuck to recognize it by shape, and that the size of the 
crossbuck is the standard 900 x 900 mm total dimensions, as 
specified by the MUTCD manual. Based on this 
information, we would need a sensor with a resolution as 
shown in Table 4 below. 
 

Speed 
(m/s) 

Sensor 
Resolution 
(degrees) 

13.4 0.1042 
17.9 0.0711 
26.8 0.0406 

Table 4: Sensor Sight Distance for Crossbuck 
 

Similar calculations could be performed for all 
other items the sensor would need to sense when 
determining if it is legal to pass at any given time and speed. 
 
6. SUMMARY 
 
The goal of this work is to produce both a taxonomy of on-
road driving behaviors and the set of specifications that 
identify the world model entities, features, attributes, 
resolutions, recognition distances, and locations for each 
separate driving task which can be used for the basis of 
performance metrics for sensory processing world model 

building.  This requires the representation of two sets of 
domain knowledge.  One is the task decomposition 
knowledge that defines the sequences of subtask activities 
for every aspect of every type of driving task.  This task 
decomposition knowledge is encoded into ordered sets of 
production rules clustered by the context of the individual 
driving tasks.  These rules consist of input conditions 
(present world situations) that when matched cause the 
output of the appropriate sub task goals.  The second set of 
domain knowledge is the detailed world state descriptions 
and evaluation functions required to produce the world 
situation symbolic values that are used as the input 
conditions by the task decomposition rules. 

We described how the 4D/RCS methodology and 
reference architecture was used to define the task 
decomposition and the resulting state tables of production 
rules.  Then we described how the input conditions of these 
rules were further evaluated to derive all of their 
dependencies on all of the corresponding world model states 
and primitive world entities, features, and attributes.  Still 
using the context of the individual driving tasks, the 
appropriate recognition distances were factored in to reach a 
specification of the requirements for the sensory and world 
model processing necessary for each separate driving task 
behavior.  These requirements now serve as both a 
requirements list for the development of the sensory and 
world model processing for different on-road driving tasks 
as well as the performance metrics against which they can 
be measured as to the correctness of their operations. 
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